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Abstract
We reconsider the study of the geometric transitions and brane/flux dualities
in various dimensions. First we give toric interpretations of the topology
changing transitions in the Calabi–Yau conifold and the Spin(7) manifold. The
latter, for instance, can be viewed as three intersecting Calabi–Yau conifolds
according to the CP2 toric graph. Orbifolds of such geometries are given in
terms of del Pezzo complex surfaces. Second we propose a four-dimensional
F-theory interpretation of type IIB geometric transitions on the Calabi–Yau
conifold. This gives a dual description of the M-theory flop in terms of toric
mirror symmetry. In two dimensions, we study the geometric transition in a
singular Spin(7) manifold constructed as a cone on SU(3)/U(1). In particular,
we discuss brane/flux duality in such a compactification in both type IIA and
type IIB superstrings. These examples preserve one supercharge and so have
N = 1/2 supersymmetry in two dimensions. Then, an interpretation in terms
of F-theory is given.

PACS numbers: 11.25.Wx, 11.30.−j

1. Introduction

It has been known for a long time that duality plays an interesting role in the context of string
theory. More recently, geometric transitions have become a tool in understanding large N
dualities between SU(N) gauge theory and closed string models [1–3]. Some well-known
examples are provided by D-branes wrapped on cycles in manifolds with non-trivial holonomy
groups, where a good description is given by the small coupling limit of the corresponding
worldvolume gauge theory. After the geometric transition, the D-branes disappear and they
are replaced by fluxes through cycles in the dual geometry, providing the adequate description
of the same physics at strong coupling [1, 2]. In Calabi–Yau geometry, for instance, the
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large-N duality between D6-branes wrapped around the S3 of the deformed conifold, T ∗S3,
and type IIA superstring on the small resolution of the conifold, O(−1) + O(−1) bundle over
CP1, with fluxes has been studied in [2]. This result has been ‘lifted’ to M-theory [4] where
it corresponds to the so-called flop duality in M-theory compactified on a manifold with G2

holonomy, for short, a G2 manifold. The mirror version of type IIA duality becomes the
large-N equivalence between D5-branes wrapped on the CP1 of the resolved conifold and type
IIB superstring with 3-form fluxes through the S3 of T ∗S3. This has been studied and extended
to more general Calabi–Yau geometries [5–11].

Recently, similar studies have been done in three and two dimensions using respectively
type IIA superstring compactified on a G2 manifold [12, 13], and type IIA(or B) on an eight-
dimensional manifold with Spin(7) holonomy group, for short, Spin(7) manifold [3, 13]. This
Spin(7) manifold is constructed as a cone on SU(3)/U(1) [14] and has a geometric transition
involving a collapsing S5 and a growing CP2. In type II superstrings, this could be interpreted
as a transition between two phases described by wrapped D-branes or R-R fluxes [3].

The aim of this work is to reconsider the study of the geometric transitions and D-
brane/flux dualities in various dimensions. First we give toric interpretations of the topology
changing transitions in the Calabi–Yau conifold and the Spin(7) manifold. The latter, for
instance, can be viewed as three intersecting Calabi–Yau conifolds according to the CP2 toric
graph. Orbifolds of such geometries are given in terms of del Pezzo complex surfaces. Second
we propose a four-dimensional F-theory interpretation of type IIB geometric transitions on
the Calabi–Yau conifold. This gives a dual description of the M-theory flop in terms of toric
mirror symmetry. In two dimensions, we study the geometric transition in a singular Spin(7)

manifold constructed as a cone on SU(3)/U(1). In particular, we discuss brane/flux duality
in such a compactification in both type IIA and type IIB superstrings. Then, we engineer gauge
symmetries going beyond the models given in [3]. These examples preserve one supercharge
and so have N = 1/2 supersymmetry in two dimensions.

The organization of this work is as follows. In section 2, we briefly review the main line
of the toric geometry method for treating manifolds with tori fibrations. In section 3, we give
a toric interpretation of the topology changing transitions in such manifolds. In particular, we
discuss the Calabi–Yau conifold transition, the Spin(7) manifold and its generalization to non-
trivial geometries. In section 4, we reconsider the study of the transition in four dimensions
by giving a new F-theory interpretation of the transition duality in type IIB superstring theory
compactified on the Calabi–Yau conifold. In the case of type II superstrings on the Spin(7)

manifolds, we give a conjecture on D-brane/flux duality in type IIA and type IIB withN = 1/2
in two dimensions. This is given in section 5. We end this study with discussion and some
open questions.

2. Toric geometry

2.1. Projective spaces and odd-dimensional spheres

In this section, we collect a few facts on toric realizations of non-trivial geometries. These
facts are needed later on when discussing the topology changing in manifolds with non-trivial
holonomy groups. Roughly speaking, toric manifolds are, in general, complex n-dimensional
manifolds with T n fibration over real n-dimensional base spaces with boundary [15–17]. They
exhibit toric actions U(1)n allowing us to encode the geometric properties of the complex
spaces in terms of simple combinatorial data of polytopes �n of the Rn space. In this
correspondence, fixed points of the toric actions U(1)n are associated with the vertices of the
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polytope �n, the edges are fixed one-dimensional lines of a subgroup U(1)n−1 of the toric
action U(1)n, and so on.

To illustrate the main idea of toric geometry, let us describe the philosophy of this subject
through certain useful examples, and then we give some generalizations useful later on.

(i) CP1 projective space. The simplest example, in toric geometry, is probably CP1. This
manifold plays a crucial role in the building blocks of higher-dimensional toric varieties
and in the study of the small resolution of singularities of local Calabi–Yau manifolds.
Roughly, CP1 has an U(1) toric action

z → eiθ z (1)

with two fixed points v1 and v2 on the real line. The latter points, which can be generally
chosen as v1 = −1 and v2 = 1, describe respectively north and south poles of the real
two sphere S2 ∼ CP1. The corresponding one-dimensional polytope is just a segment
[v1, v2] joining the two points v1 and v2. Thus, CP1 can be viewed as the segment [v1, v2]
with a circle on top, where the circle vanishes at the end points v1 and v2.

v1 v2 (2)

(ii) CP2 projective space. This is a complex two-dimensional toric variety defined by

CP2 = C3\{(0, 0, 0)}
C∗ , (3)

where C∗ : (z1, z2, z3) → (λz1, λz2, λz3). This manifold admits an U(1)2 toric symmetry
acting as follows,

(z1, z2, z3) → (eiθ1z1, eiθ2z2, z3) (4)

and exhibiting three fixed points v1, v2 and v3. The corresponding polytope �2 is a finite
sublattice of the Z2 square lattice. It describes the intersection of three CP1 defining a
triangle (v1v2v3) in the R2 plane. Thus, �2 has three edges, namely [v1, v2], [v2, v3] and
[v3, v1], stable under the three U(1) subgroups of U(1)2. Two subgroups are just the
two U(1) factors, while the third subgroup is the diagonal one. CP2 can be viewed as
a triangle over each point of which there is an elliptic curve T 2. This torus shrinks to a
circle at each segment [vi, vj ] and it shrinks to a point at each vi . This is shown in the
following figure:
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��
v1

v2 v3

z3 = 0

z1 = 0

z2 = 0

(5)

This toric realization will play a crucial role in our present work. For n-dimensional
projective spaces CPn, the toric representation is given by Tn fibration over a n-
dimensional simplex.
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The above representation can be extended to some real manifolds, in particular the
odd-dimensional real spheres being related to CPn by

CPn = S2n+1/S1. (6)

In this way, S2n+1 is a S1 bundle over CPn. Using this realization, one can give a toric
representation for odd-dimensional spheres. Indeed, the 1-sphere, for example, is trivially
realized as a T1 ∼ S1 over the zero-simplex—a point. As we have seen, the 3-sphere
may be realized as a T2 over a one-simplex—a line segment as the one in (2). This may
be extended to the (2n + 1)-dimensional sphere S2n+1 which may be described as a Tn+1

over an n-simplex. Of particular interest in this work is the 5-sphere S5 being realized as
the triangle (5) with a T3 on top (whereas CP2 had a T2 on top).

2.2. More general toric varieties

Let us now consider a more complicated example. The geometries that we will study in
this subsection can also be described as quotient spaces. Consider the complex space Cn+r

parametrized by z1, . . . , zn+r and rC∗ actions given by

C∗r : zi → λQα
i zi, i = 1, 2, . . . , n + r, α = 1, 2, . . . , r, (7)

where Qα
i are integers. For each α they form the so-called Mori vectors in toric geometry. They

generalize the weight vector (wi) of the complex n-dimensional weighted projective space
WCPn

w1,...,wn+1
. Now one can define a general toric variety Vn by the following symplectic

quotient space,

Vn = Cn+r\U
C∗r , (8)

where U is a subset of Ck chosen by triangulation [16].
Vn has a T n fibration, obtained by dividing T n+r by the U(1)r gauge symmetry

zi → eiQα
i ϑα

zi, α = 1, . . . , r, (9)

where ϑα are the generators of the U(1) factors. It can be represented by a toric graph �(Vn)

spanned by k = n + r vertices vi in Zn lattice satisfying
n+r∑
i=1

Qα
i vi = 0, α = 1, . . . , r. (10)

This geometric description of Vn has a nice physical realization through the N = 2 linear
sigma model. The theory has an U(1)r gauge symmetry with n + r chiral fields φi and a
Qα

i matrix gauge charge [18]. In this way, Vn is a solution of the vanishing condition of the
D-term potential (Dα = 0), up to U(1)r gauge transformations, namely

n+r∑
i=1

Qα
i |φi |2 = ρα, (11)

where the ρα are Fayet–Iliopoulos (FI) coupling parameters. The (local) Calabi–Yau condition
is satisfied by

n+r∑
i=1

Qα
i = 0, ∀ α, (12)

which means that the physical system flows in the IR to a non-trivial superconformal theory
[18, 19].
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Finally note that for a given toric complex manifold, one can construct its mirror using
two-dimensional sigma model analysis [20, 21]. Indeed, the mirror version of the constraint
equation (11), giving the superpotential in the Landau–Ginsburg (LG) models, reads∑

i

aiyi = 0 (13)

subject to ∏
i

y
Qα

i

i = 1. (14)

In these equations, yi are LG dual chiral fields which can be related, up to some field changes,
to sigma model fields and where ai can be identified with the complexified FI parameters,
defining now the complex deformations of the LG Calabi–Yau superpotentials.

3. Toric varieties and geometric transitions

In this section, we reconsider the study of the topology changing of manifolds with exceptional
holonomy group using toric geometry. In particular, we discuss the case of the Calabi–Yau
manifold and Spin(7) manifolds.

3.1. Toric Calabi–Yau conifold

Let us consider first the known example corresponding to three complex dimensions which is
the so-called conifold. This manifold is defined by the following algebraic equation,

uv − xy = 0, (15)

where the singularity is located at (u, v, x, y) = (0, 0, 0, 0). There are basically two ways of
smoothing this singularity, either by ‘toric’ small resolution or by complex deformation.

Toric small resolution. It consists in replacing the singular point (0, 0, 0, 0) by a toric CP1

manifold. This resolution can be described by a N = 2 toric sigma model realization.
The theory is an U(1) gauge model with four chiral matter fields φi with the vector charge
Qi = (1, 1,−1,−1). In this way, the conifold equation (15) can be solved in terms of the
gauge invariant terms as follows:

u = φ1φ3 v = φ2φ4 x = φ1φ4 y = φ2φ3. (16)

Turning on the FI D-terms, which are given by

VD = (|φ1|2 + |φ2|2 − |φ3|2 − |φ4|2 − ρ)2, (17)

corresponds to blowing up the origin by a toric CP1. Indeed, consider, for example, the case
ρ > 0. Then the fields φ1 and φ2 cannot be zero, and these two coordinates define a CP1 given
(up to a U(1) gauge transformation) by

|φ1|2 + |φ2|2 = ρ. (18)

The fields φ3 and φ4 can be regarded as non-compact coordinates parametrizing the normal
directions for the fibres. Then the total space of the small resolution is a toric variety given
by the bundle O(−1) + O(−1) → CP1, which is topologically R

4 × S2. A similar analysis
can be done for ρ < 0 by exchanging the role of the base and the fibre. These two small
resolutions (ρ < 0 and ρ > 0) of the conifold are related by the so-called flop transition.

Complex deformation. Besides the toric resolution we have discussed above, the conifold
singularity can be deformed by keeping the Kahler structure and modifying the defining
algebraic equation as follows,

uv − xy = µ, (19)
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where µ is a complex parameter. Now the singular point is replaced by an S3 being obtained by
taking a real parameter µ, u = v̄ and x = −ȳ. Up to changes of variables, one can show that
the total geometry is nothing but T ∗S3, whose topology is clearly R

3 × S3. This is called the
deformed conifold and is related to the resolved conifold by the so-called conifold transition.

The conifold transition admits a representation in toric geometry, where it can be
understood as an enhancement or breaking, respectively, of the toric circle actions. On
the one hand, the O(−1) + O(−1) bundle over CP1 has only one toric U(1) action, identified
with the toric action on CP1 itself, while the deformed conifold T ∗S3 has a toric U(1)2 action
since the spherical part can be viewed as a T2 over a line segment. The torus is generated by
the two U(1) actions

(u, v) → (eiθ1u, e−iθ1v), (x, y) → (eiθ2x, e−iθ2y) (20)

with θi real. Thus, the blown-up S3 may be described by the complex interval [0, µ] with
the two circles parametrized by θi on top, where S1(θ1) collapses to a point at µ while S1(θ2)

collapses to a point at 0. The transition occurs when one of these circles refrains from
collapsing while the other one collapses at both interval endpoints. This breaks the toric
U(1)2 action to U(1), and the missing U(1) symmetry has become a real line (over CP1). The
resulting geometry is thus the resolved conifold.

3.2. Toric representation of the transition in the Spin(7) manifold

In this subsection, we propose a picture for understanding the topology changing transition
of the Spin(7) manifold discussed in [13] using toric geometry. The example we shall be
interested in may be described as a singular real cone over the seven-dimensional Aloff–
Wallach (coset) space SU(3)/U(1). It was argued in [13] that there are two ways of blowing
up the singularity, replacing the singularity by either CP2 or S5. The resulting smooth Spin(7)

manifolds are given by R
4×CP2 and R

3×S5 and are referred to as resolution and deformation,
respectively, due to the similarity with the Calabi–Yau conifold (R4 × CP1 and R

3 × S3).
Here we shall re-consider the transition between these two manifolds in the framework

of toric geometry. The basic idea [3] is to view the singular Spin(7) manifold (the real cone
on SU(3)/U(1)) as three intersecting Calabi–Yau conifolds associated with the triangular
toric diagram (5). The deformed and resolved Spin(7) manifolds then correspond to the three
intersecting Calabi–Yau conifolds being deformed or resolved, respectively.

Indeed, let us consider the complex linear space C
3 described by the three coordinates

(z1, z2, z3). Let us introduce the constraint equation

|z1|2 + |z2|2 + |z3|2 = r, (21)

where r is real and positive. This defines a S5 while the additional identification

(z1, z2, z3) ∼ (eiθ z1, eiθ z2, eiθ z3) (22)

(with θ real) will turn it into a CP2. In either case, r measures the size. With both conditions
imposed, we can obtain the three resolved Calabi–Yau conifolds R

4×CP1 (zk = 0), k = 1, 2, 3
embedded in R

4×C
3, simply by setting one of the coordinates equal to 0. The resolution of the

Spin(7) singularity reached by blowing up a CP2 can thus be described by three intersecting
resolved conifolds over the triangle (5). Likewise, the deformation of the Spin(7) singularity
constructed by blowing up a S5 may be realized as three intersecting deformed Calabi–Yau
conifolds R

3 × S3 (zk = 0), k = 1, 2, 3 over the same triangle. Note that this interpretation of
the Spin(7) manifold as three intersecting Calabi–Yau manifolds over a triangle we have given
corresponds to all three Calabi–Yau manifolds undergoing simultaneous conifold transitions.
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3.3. More general geometric transitions

There are several generalizations of the above analysis of the Spin(7) manifold. We discuss
some of them briefly here and leave others for future research.

3.3.1. Orbifolds of Spin(7) manifolds and del Pezzo surfaces. A simple generalization of
the above idea is to consider orbifolds of Spin(7) manifolds. This involves del Pezzo complex
surfaces dBk, k = 1, 2, . . . as base geometries. First we recall that dBk are two-dimensional
complex surfaces that are obtained by blowing up to k points in CP2. Alternatively dBk can
be obtained as Hirzebruch surfaces Fk being spheres fibred over spheres. In this way, dPk can
be identified with Fk−1. With the number of points restricted as k = 1, 2, 3, this defines the
so-called toric del Pezzo surfaces. In toric geometry, the blowing up consists in replacing a
point by CP1 with a line segment as its toric diagram. The full del Pezzo surface will thus
have a polygon with k + 3 legs as its toric diagram. Let us now consider the resolved Spin(7)

manifold and introduce a Z2 discrete group acting only on two homogeneous coordinates of
CP2 as follows:

(z1, z2, z3) → (−z1,−z2, z3). (23)

This transformation leads to a singular geometry. Locally, near such a singularity, this looks
like an A1 ALE space. This is given by

uv = z2 (24)

where u = z2
1, v = z2

2 and z = z1z2. The blow up of this singularity leads to CP1 ×CP1 which
can be identified with dP1. So, the total geometry can be regarded now as four intersecting
resolved conifolds according to a rectangle. After transition, we expect the same intersection
but with the deformed Calabi–Yau conifolds. A similar analysis could be done for a generic
value of k. In this way, the resulting geometry is given by k + 3 intersecting Calabi–Yau
manifolds according to a polygon.

3.3.2. Higher-dimensional geometries. Another possible generalization is to consider n-
dimensional projective space CPn. Since S2n+1 can be described as a Tn+1 over an n-simplex
it supports a toric U(1)n+1 action whereas CPn (which may be realized as a Tn over an n-
simplex) admits a toric U(1)n symmetry. Like Calabi–Yau conifold, we are thus expecting
that a geometric transition can take place, replacing a U(1) by the one-dimensional real line
R. Since the U(1) is associated with one of the S1 factors of Tn+1, the transition essentially
amounts to replacing Tn+1 by Tn × R. Our interest is in real fibrations over the spaces S2n+1

and CPn so the relevant geometric transitions [3] may be read as

(deformed geometry) R
3 × S2n+1 ←→ R

4 × CPn (resolved geometry). (25)

Relating it to toric geometry, this transition has a representation as intersecting conifolds over
an n-simplex, provided by a simple combinatorial analysis. Indeed, the number of intersecting
Calabi–Yau conifolds in the toric picture is equal to the number of one-dimensional edges
of the simplex, namely 1

2n(n + 1). Similarly, one should also expect to be able to describe
the transition in terms of intersecting Spin(7) manifolds over the n-simplex. In this case, the
number of intersecting Spin(7) conifolds is equal to the number of two-dimensional faces of
the simplex, 1

6n(n2 − 1).
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4. Geometric transitions in four dimensions

4.1. Duality in type IIA

Gopakumar and Vafa have recently conjectured that the SU(N) Chern–Simons theory on S3

for large N is dual to topological strings on the resolved conifold [1]. In this way, the ’t
Hooft expansion of the Chern–Simons free energy has been shown to be in agreement, for
all genera, with the topological string amplitudes on the resolved conifold. This duality has
subsequently been embedded in type IIA superstring theory [2], where it was proposed that N
D6-branes wrapped around S3 of the deformed conifold is equivalent (for large N ) to type IIA
superstring on the resolved conifold where the D6-branes replaced by N units of R-R 2-form
fluxes through the 2-sphere (S2 ∼ CP1) in the resolved conifold. This duality thus offers a
way of understanding the same physics at strong coupling.

M-theory interpretation. The large-N duality in type IIA superstring theory has also been
lifted to M-theory on a G2 manifold [4, 12], where it is known to give the so-called flop
duality. This gives an M-theory interpretation of the type IIA duality transition between the
geometry involving branes and the one involving fluxes. Unlike the duality in string theory,
the phase transition here is smooth and does not correspond to a topology changing geometric
transition. To see this, consider M-theory on a seven-dimensional manifold X7 defined by

|z1|2 + |z2|2 − |z3|2 − |z4|2 = ρ, (26)

where zi are four complex variables and ρ is a real parameter. This equation defines an R
4

bundle over S3 having G2 holonomy group. We now have two geometries related by a flop
[4]. These are given by:

X7
ρ = {(zi) ∈ C4 : |z1|2 + |z2|2 − |z3|2 − |z4|2 = ρ} (27)

X7
−ρ = {(zi) ∈ C4 : |z1|2 + |z2|2 − |z3|2 − |z4|2 = −ρ} (28)

or, equivalently

X7
ρ = S3(z1, z2) × C2(z3, z4)

∼= S3 × R4 (29)

X7
−ρ = C2(z1, z2) × S3(z3, z4)

∼= R
4 × S3. (30)

In order to obtain, for instance, the small resolution with RR 2-form flux, we need to identify
the M-theory circle with the circle of the Hopf bundle S1 over S2, this being equivalent to
identifying the ‘11th’ circle with one of the toric geometry actions of the S3 that we have
discussed above. On the other hand, if we choose the M-theory circle in R

4 we get the
deformed conifold geometry. Furthermore, this U(1) toric action turns out to have fixed
points, giving rise to singularities that will correspond to D6-brane charges [15].

4.2. Duality in type IIB

The mirror version in type IIB superstring theory of type IIA duality states that the scenario
with N D5-branes wrapped around the 2-sphere in the resolved conifold, is equivalent (for
large N ) to 3-form fluxes through the S3 of the deformed conifold. This has been generalized
to other Calabi–Yau threefolds where the blown-up geometries involve several CP1 [5–11].

F-theory interpretation. So far we have reviewed how a type IIA duality (namely, the large-N
equivalence between a system of D6-branes wrapped on the finite S3 of T ∗S3 and a type
IIA background with 2-form flux on the S2 of the resolved conifold and no branes) arises
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from an M-theory flop [4]. A natural question is about the ‘mirror flop’, i.e. about an
alternative description of the mirror version of this type IIA large-N duality. Mirror symmetry
between type IIA and type IIB compactifications maps the D6/S3 system to a system of D5-
branes wrapped on the S2 of the resolved conifold and, correspondingly, maps the type IIA
configuration with fluxes only (no branes) to a type IIB background with only 3-form fluxes
on the blown-up S3 of the deformed conifold. Naively, the corresponding ‘mirror flop’ could
be described by using mirror symmetry in M-theory compactifications. In this section we are
going to see that what would be the ‘mirror flop’ is actually mirror symmetry in the base of
a fourfold which is a (trivial) elliptic fibration over the conifold. Such a fourfold naturally
describes an F-theory compactification [22]. To do so, we will proceed in two steps. First we
note that the above-discussed conifold geometries are related by the local mirror symmetry
transformation. To see this, consider the mirror geometry of the small resolution. Using
(8)–(20), this is defined by solving the following constraint equations:

a1y1 + a2y2 + a3y3 + a4y4 = 0 (31)

y1y2 = y3y4. (32)

A solution of the last equation is given by y1 = 1, y2 = x, y3 = y, y4 = xy, and the mirror
geometry becomes

a1 + a2x + a3y + a4xy = 0. (33)

At first sight, this geometry looks quite different from (19). However, one can relate it to the
deformed conifold by taking the following limit in the complex moduli space:

a1 = µ, a2 = a3 = 0, a4 = 1. (34)

Now, we add the quadratic term. Note that this procedure has no influence on the physical
moduli space. In this way, one can see that the mirror symmetry acts as follows,

R
4 × S2 ←→ R

3 × S3 (35)

and then it could be interpreted as a breaking/enhancement of an U(1) toric action, as discussed
in the previous section.

The second step is to use this feature and our result in the context of the mirror duality
between M-theory on G2 manifolds and F-theory on elliptic Calabi–Yau fourfolds [23].
Indeed, let us consider the conifold geometries described above as a mirror pair, and use
the limit R

4 = R
3 × S1 corresponding to the moduli space of one monopole in M-theory

compactification. In such a limit, M-theory on (26) is dual to F-theory on a Calabi–Yau
fourfold which is the product of T 2 and the small resolution of the conifold. The type IIB
meaning of this F-theory compactification has to be then the mirror system of the D6/S3

configuration, i.e. D5-branes wrapped on the S2 of the resolved conifold geometry. Now, if
we apply toric mirror symmetry in the base of the fourfold on which we are compactifying
F-theory, we are led to an F-theory compactification on T 2 ×T ∗S3. This provides the F-theory
description of the other side of the type IIB transition (with only RR 3-form fluxes on the S3).
This procedure immediately gives us another description of the M-theory flop of [4] in terms
of mirror symmetry: if, as above, we look at (26) as an S1 fibre over the deformed conifold,
we find that the flop can be alternatively described by mirror symmetry in the base of that
fibration.

5. Geometric transition in two dimensions

In the previous section, we have presented the brane/flux duality in four dimensions which
arises from the transition in the Calabi–Yau conifold. A natural question is whether a similar
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description exists for the transition on the Spin(7) manifold compactification. In this section,
we shall give such a description using the results of type II superstrings compactified on
the conifold and the toric realization of the geometric transition of the Spin(7) manifolds.
Following [3], we shall consider the large-N limit two-dimensional gauge theories obtained by
considering type II superstrings propagating on Spin(7) manifolds. The idea is to discuss the
consequences of adding N wrapped D-branes to the set-up before letting the manifold undergo
the geometric transition. In the transition from the resolved to the deformed Spin(7) manifold,
we initially have D-branes wrapping CP2 (and its constituent 2-spheres). We conjecture that
they are replaced, under the transition, by R-R fluxes through S5 (and its constituent 3-spheres).
Similarly in the transition from deformed to resolved Spin(7) manifolds, we conjecture that
D-branes wrapped around S5 (and its constituent 3-spheres) are replaced by R-R fluxes through
CP2 (and its constituent 2-spheres). The kind of D-branes involved and the more detailed
phase transition depend on which type II superstrings are propagating on Spin(7) manifolds. In
what follows, we shall therefore consider type IIA and type IIB separately leading to different
brane/flux dualities. First we consider type IIA geometry. Then we discuss the type IIB mode
with several D-brane configurations involving D1, D3, D5 and D7-branes.

5.1. Duality in type IIA

First we consider type IIA superstring on the deformed Spin(7) manifold. A two-dimensional
U(N) gauge theory can be obtained by wrapping N D6-branes around S5. The volume of
S5 described by r (21) is proportional to the inverse of the gauge coupling squared. This
gauge model has only one supercharge. Thus we have N = 1/2. At the transition point, the
D6-branes disappear and are replaced by R-R 2-form fluxes through the 2-spheres embedded
in CP2 in the resolved Spin(7) manifold.

M-theory interpretation. At this level, a natural question is about the analogue of the flop
duality in four dimensions. The answer of this question may be given in terms of M-
theory compactifications [3]. Indeed, consider a nine-dimensional manifold X9 with an U(1)

isometry. M-theory compactified on X9 is then equivalent to type IIA superstring compactified
on X9/U(1). We start with the resolved Spin(7) manifold and identify the extra eleventh
compact dimension of M-theory with the S1 that generates (22). In this way, the extra M-
theory circle becomes the fibre in the definition of S5 as a S1 fibration over CP2. We thus end
up with an R

4 bundle over S5 as the compactification space in M-theory. As a consequence,
the moduli space of M-theory on such a background is parametrized by the real parameter r
defining the volume of S5 (21), and cannot be complexified by the C-field. Starting with the
resolved Spin(7) manifold, on the other hand, the eleventh M-theory dimension is obtained
by extending R

3 to R
4 with the isometry being a trivial U(1) action on the fibre R

4. Using
arguments similar to those in [4], it is conjectured [3] that this lift to M-theory gives rise to a
(smooth) flop transition in the R

4 bundle over S5 where a 5-sphere collapses and is replaced by
a new 5-sphere. In our scenario, however, the physics resulting from the type IIA superstring
compactification undergoes a singular phase transition due to the absence of 5-form gauge
field in the spectrum.

5.2. Duality in type IIB

Now we consider type IIB superstring on the resolved Spin(7) manifold. In this case, two-
dimensional gauge models can be engineered using several brane configurations. In particular,
we have the following D-brane realizations:
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• N parallel D1-branes filing the two-dimensional spacetime (and placed at the singular
point of the Spin(7) manifold). This gives an U(N) gauge symmetry in spacetime.

• N parallel wrapped D3-branes over real 2-cycles and filing the two-dimensional spacetime
(and placed at the singular point of the Spin(7) manifold). This leads also to 2D U(N)

theory.

• One may also have systems involving D3-branes and D1-branes. This may lead to
U(N1) × U(N2) product gauge symmetry.

• N parallel wrapped D5-branes over CP2 and filing the two-dimensional spacetime (and
placed at the singular point). This leads to U(N) gauge symmetry.

• N parallel wrapped D7-branes over real 6-cycles in Spin(7) manifold and filing the two-
dimensional spacetime (and placed at the singular point). This gives an U(N) gauge
symmetry.

• One may also have systems involving D7-branes, D5-branes, D3-branes and D1-branes.
This may lead to U(N1) × U(N2) × U(N3) × U(N4) product gauge symmetry.

To realize two last configurations, we need a 6-cycle. To get that, we should mod out,
the resolved Spin(7) manifold, by a Z2 discrete group acting on the fibre direction of R

4

bundle over CP2. This corresponds to ALE space with A1 singularity over CP2. After the
deformation of this singularity, one gets a 6-cycle given by CP1 × CP2. In shrinking limit,
this will correspond to 6-cycle/5-cycle transition in superstring compactifications. This looks
like the case of 4-cycle/3-cycle transition studied in [7]. In particular, after the transition, one
may have S5/Z2 as a dual cycle.

Now return to the large-N limit duality in type IIB. Here, we are not going to deal with
the all above brane configurations. However, we consider a system with only D5-branes.
Then we discuss a case where we have D3-branes. Since the type IIB superstring does not
support 4-forms, one can wrap D5-branes around CP2. As we have seen, a two-dimensional
gauge model with U(N) gauge symmetry can be obtained by wrapping N D5-branes on
CP2. The volume of CP2 described by r (21) is proportional to the inverse of the gauge
coupling squared. This two-dimensional model has only one supercharge so N = 1/2. Now,
when the manifold undergoes the geometric transition to the deformed Spin(7) manifold,
the N D5-branes disappear and we expect a dual physics with N units of R-R three-fluxes
through the compact 3-cycles, S3, in the intersecting Calabi–Yau threefolds. These fluxes
could be accompanied by some NS-NS fluxes through the non-compact dual 3-cycles in the
six-dimensional deformed conifolds. In order to handle the associated divergent integrals, one
would have to introduce a cut-off to regulate the infinity [5].

So far, we have studied the geometric transition involving only D5-branes on the Spin(7)

manifold. Now we would like to go beyond this model by adding, for instance, D3-branes.
We will show that this brane configuration could be related to del Pezzo surfaces. Here, our
construction of such brane gauge models will be based on N = 2 sigma model realization
of the internal compact geometry. For simplicity, let us consider dP1. Indeed, this can be
realized by U1(1) × U2(1) gauge theory with four chiral fields φi with charges

Q(1) = (1, 1, 1, 0) Q(2) = (0, 0, 1, 1).

The vanishing condition of D-terms reads as

|φ1|2 + |φ2|2 + |φ3|2 = α1 |φ3|2 + |φ4|2 = α2

and defines dP1. In what follows we will identify the U1(1)×U2(1) sigma model gauge group
with the gauge symmetry living on the worldvolume of D-branes. Indeed, omitting first the
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U2(1) and after the wrapping procedure, U1(1) gauge symmetry can be identified with an U(1)

gauge field living on the D5-brane worldvolume1. However, due to the presence of U2(1),
we really could introduce an extra brane. In this way, U2(1) can be identified with the U(1)

gauge field living on its worldvolume. Since U2(1), in N = 2 sigma model, corresponds to a
blowing-up 2-cycle, we should add a D3-brane. The latter can wrap such a cycle and leads to
an extra U(1) factor in two-dimensional spacetime. So, the general gauge symmetry is then
U(1) × U(1). In what follows, we should note the following points:

1. In the vanishing limit of the 2-cycle, where dP1 reduces to CP2, one gets only one U(1)

factor corresponding to one D5-brane.
2. The above model could be generalized for the case where we have more than one brane.

If we assume that one has the same number of D5 and D3-branes, then the gauge group
should be U(N) × U(N).

3. After the transition point, these branes disappear and replaced by 3-form and 5-form
fluxes on S5/Z2.

We conclude this work with a comment regarding a F-theory interpretation of type IIB
geometric transition in the compactification on the above Spin(7) manifold. This is given
by a F-theory compactification on a ten-dimensional manifold involving a S5 flop transition.
While we were thinking on this question after completing the first version of this work, [24]
appeared which has a considerable overlap with this comment. In [24], a 11-dimensional
interpretation has been given. However, here we give a direct compactification on a ten-
dimensional manifold preserving only one supercharge in two dimensions. Based on a close
analogy to the Calabi–Yau case, we propose the following ten-dimensional,

T ∗(S5)/σ, (36)

where T ∗(S5) is the complex deformation of the singular Calabi–Yau five-folds given by

w2
1 + w2

2 + w2
3 + w2

4 + w2
5 + w2

6 = 0. (37)

This manifold has nice features supporting our proposition:

(1) In string theory compactifications, T ∗(S5) preserves 1/16 of initial supercharges and
in the presence of σ it should be 1/32. Thus, F-theory on the above ten-dimensional
manifold leads to only one supercharge in two dimensions.

(2) The presence of σ may lead to a S5 flop transition in the quotient space. It is easy to
see this by taking wj as xj + iyj and rewriting the above algebraic equation. In this way,
T ∗(S5) can be described by

x · x − y · y = r, x · y = 0, (38)

where r is a real parameter describing the size of S5. If we think that σ acts as x → y,
and r → −r , then we have two spheres being connected by the so-called flop transition.

(3) After a compactification, the reduced manifold may involve three Calab-Yau conifolds.
To see this let us take a simple linear coordinate from (w1, . . . , w6) to (z1, z2, z3, z4, u, v).
This allows one to describe the above manifold by∑

1�i<j�4

zizj = z4(z3 + z2 + z1) + z3(z2 + z1) + z2z1 = uv (39)

1 This model can be identified with the one studied in the previous subsection.
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with

d =
√

2 +
√

3

2
+ i

√
2 − √

3

2
. (41)

Equation (39) describes six Calabi–Yau conifolds given by uv = zizj ; zk = z	 = 0, i �=
j �= k �= 	. However if we identify one of the zi complex variables with the T 2 torus of
F-theory compactification, this number reduces to three and it is in agreement with the
spin(7) geometry involving three Calabi–Yau manifolds.

(4) Finally, the topology of spin(7) manifold can be obtained by identifying the T 2 torus
of F-theory with the toric actions of T ∗(S5)/σ . Using the results of section 2 and [17],
one can get the resolved spin(7) by choosing one circle in the S5 base geometry and one
circle in the corresponding cotangent directions, while the deformed spin(7) manifold
is obtained by identifying the two F-theory circles with toric actions of the cotangent
bundles.

6. Discussions

In this study, geometric transitions in type II superstrings on Calabi–Yau conifold and Spin(7)

manifolds have been discussed using toric geometry. In the Calabi–Yau case, we have
proposed a new F-theory interpretation for type IIB propagating on the conifold. Following
[3] on Spin(7) manifolds, we have given a picture for understanding the topology changing
transition in the Spin(7) manifolds in terms of the Calabi–Yau conifold transition. Then, we
have studied brane/flux dualities in two dimensions using several brane configurations. This
study gives first examples of geometric transitions with N = 1/2 supersymmetry. Then, an
interpretation in terms of F-theory has been given.

This work opens up for further discussions. We shall collect some of them.

• In this study, we have considered the Spin(7) manifold as intersecting Calabi–Yau three-
folds over a triangle where the Spin(7) transition corresponds to three simultaneous
conifold transitions. It would be interesting to study the geometries associated with
individual conifold transitions.

• It should be nice to find a sigma model explanation of the Spin(7) transition.
• We expect that all studies which have been done for the Calabi–Yau conifold could be

pushed to Spin(7) manifolds. It would be nice to study the analogue of the Klebanov–
Witten model on the conifold [25] for Spin(7) manifold.

We leave these questions for future works.

Acknowledgments

I would like to thank Cesar Gomez, Karl Landsteiner, Ernesto Lozano Tellechea,
Jørgen Rasmussen and El Hassan Saidi, for discussions, collaborations and scientific help.



1384 A Belhaj

I am very grateful for the support I have received from CSIC. This work is supported by
Ministerio de Educación Cultura y Deportes (Spain) grant SB 2002-0036.

References

[1] Gopakumar R and Vafa C 1999 On the gauge theory/geometry correspondence Adv. Theor. Math. Phys. 3
1415–43 (Preprint hep-th/9811131)

[2] Vafa C 2001 Superstrings and topological strings at large N J. Math. Phys. 42 2798–817 (Preprint hep-th/

0008142)
[3] Belhaj A and Rasmussen J 2004 On toric geometry, Spin(7) manifolds, and type II superstring compactifications

Preprint hep-th/0402119
[4] Atiyah M, Maldacena J and Vafa C 2001 An M-theory flop as a large N duality J. Math. Phys. 42 3209–20

(Preprint hep-th/0011256)
[5] Cachazo F, Intriligator K and Vafa C 2001 A large N duality via a geometric transition Nucl. Phys. B 603 3–41

(Preprint hep-th/0103067)
[6] Cachazo F, Katz S and Vafa C 2001 Geometric transitions and N = 1 quiver theories Preprint hep-th/0108120
[7] Cachazo F, Fiol B, Intriligator K, Katz S and Vafa C 2002 A geometric unification of dualities Nucl. Phys.

B 628 3–78 (Preprint hep-th/0110028)
[8] Aganagic M, Marino M and Vafa C 2002 All loop topological string amplitudes from Chern–Simons theory

(Preprint hep-th/0206164)
[9] Gopakumar R 2003 N = 1 theories and a geometric master field J. High Energy Phys. JHEP05(2003)033

(Preprint hep-th/0211100)
[10] Landsteiner K and Lazaroiu C I 2003 Geometric regularizations and dual conifold transitions J. High Energy

Phys. JHEP04(2003)028 (Preprint hep-th/0303054)
[11] Ahl Laamara R, Ait Ben Haddou M, Belhaj A, Drissi L B and Saidi E H 2004 RG cascades in hyperbolic quiver

gauge theories (Preprint hep-th/0405222)
[12] Atiyah M and Witten E 2003 M-theory dynamics on a manifold of G2 holonomy Adv. Theor. Math. Phys. 6

1–106 (Preprint hep-th/0107177)
[13] Gukov S, Sparks J and Tong D 2003 Conifold transitions and five-brane condensation in M-theory on Spin(7)

manifolds Class. Quantum Grav. 20 665–706 (Preprint hep-th/0207244)
[14] Joyce D 1999 A new construction of compact 8-manifolds with holonomy Spin(7) J. Diff. Geom. 53 89–130

(Preprint math.DG/9910002)
[15] Leung N C and Vafa C 1998 Branes and toric geometry Adv. Theor. Math. Phys. 2 91–118 (Preprint hep-

th/9711013)
[16] Belhaj A and Saidi E H 2002 Toric geometry, enhanced non simply laced gauge symmetries in superstrings and

F-theory compactifications (Preprint hep-th/0012131)
[17] Belhaj A 2004 M-theory on G2 manifolds and the method of (p, q) brane webs J. Phys. A: Math. Gen. 37

5067–81 (Preprint hep-th/0303198)
[18] Witten E 1993 Phases of N = 2 theories in two dimensions Nucl. Phys. B 403 159–222 (Preprint hep-

th/9301042)
[19] Belhaj A and Saidi E H 2001 Hyperkahler singularities in superstrings compactification and 2d N = 4 conformal

field theory Class. Quantum Grav. 18 57–82 (Preprint hep-th/0002205)
[20] Hori K and Vafa C 2000 Mirror symmetry Preprint hep-th/0002222

Hori K, Iqbal A and Vafa C 2000 D-branes and mirror symmetry Preprint hep-th/0005247
[21] Belhaj A 2002 Mirror symmetry and Landau Ginzburg Calabi–Yau superpotentials in F-theory compactifications

J. Phys. A: Math. Gen. 35 965–84 (Preprint hep-th/0112005)
[22] Vafa C 1996 Evidence for F-theory Nucl. Phys. B 469 403–18
[23] Belhaj A 2003 F-theory duals of M-theory on G2 manifolds from mirror symmetry J. Phys. A: Math. Gen.

36 4191–206 (Preprint hep-th/0207208)
[24] Tan M C and Teo E 2004 A spin(7) conifold transition in type IIB as an F-theory flop Preprint hep-th/0409196
[25] Klebanov I R and Witten E 1998 Superconformal field theory on threebranes at a Calabi–Yau singularity Nucl.

Phys. B 536 199–218 (Preprint hep-th/9807080)


